Software Defined Radio for Infosec People 101

Garrett Gee

Agenda

- Radio Frequency
- Hardware
- Software
- Decoding (Passive) Examples Planes, Ships, Pagers
- Hacking (Active) Examples iOS, Cell Phones, House Alarm System
- Process for Decoding
- Reverse Engineering Example

@ggee - Hacker. Entrepreneur. Autodidact.

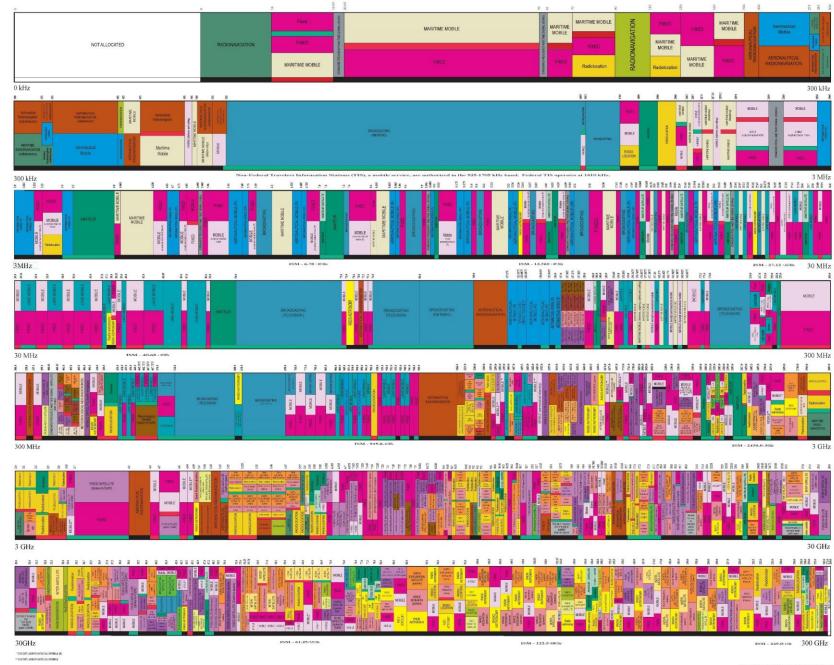
Hacker

- 60 Minutes Cyber War 2000
- Portable Linux Auditing CD (PLAC) 2001
- Doppelganger Domains 2011
 - CNN, Wired, The Osgood File, Bloomberg BusinessWeek, BBC
- Entrepreneur
 - Godai Group LLC
 - Hacker Warehouse
 - Infosec Events
- Autodidact

Background – Radio Frequency

- Any electromagnetic wave frequencies that lie in the range extending from around 3 kHz to 300 GHz
- Common Examples
 - AM / FM broadcast radio
 - Cell phones
 - Global Positioning System
 - Pagers
 - Television
 - Wi-Fi

UNITED


STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM

This chart in a graphic negle-point in time particular of the Toble of Trouppasy. All outform used by the FCC and XTRA, As each, it may not complexity of heat all support, in a featurement recent sharper make to the Table of Foregoing Allocations. Therefore, for complex information, successfueld around the Table to determine the amount notice ITE a fractations.

Background – Software Defined Radio

- Radio front end
- No dedicated IC backend for decoding radio signal
- Digitize signal and pass it to host system
- Mixers, filters, amplifiers, modulators/demodulators, etc. are all in software
- If you can tune it, you can be that type of radio (in theory)

SDR for Infosec?

- One device can talk to nearly infinite protocols
- Investigate protocols for which there are no public specs or chips
- Investigate protocols for which debugging equipment is \$\$\$, requires you to be a large company, requires NDA, etc.

Hardware

- Lots of SDR devices out there
- Frequency Range
- Bandwidth
- Receive Only / Half Duplex / Full Duplex
- Price

Hardware – RTL-SDR

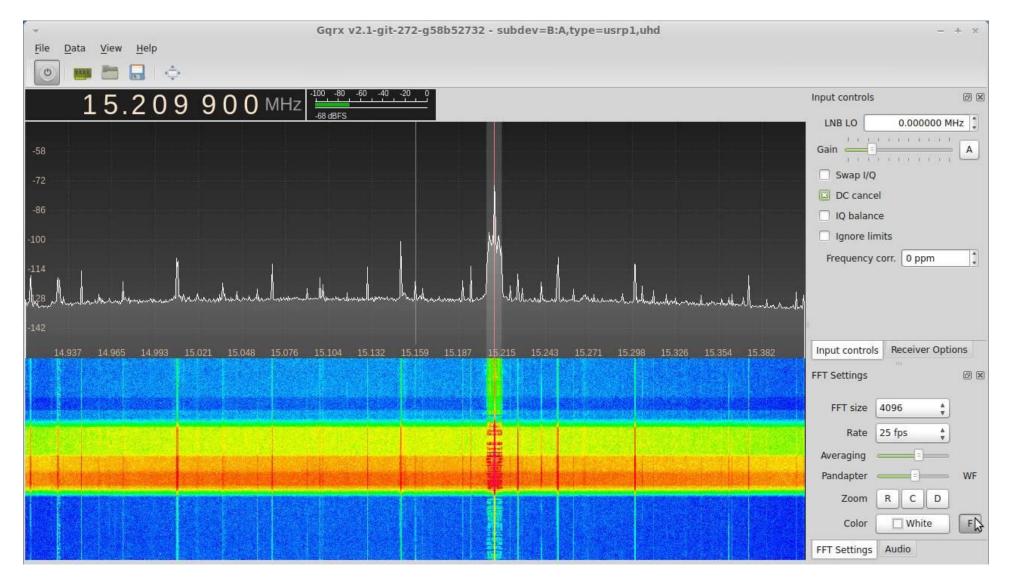
- aka Digital Video Broadcasting Terrestrial (DVB-T)
- Realtek RTL2832U/R820T Tuner Receiver
- Frequency Range: 24 MHz to 1.8 GHz
- Bandwidth: 2-3 MHz
- Receive only
- •~\$10-\$20

Hardware – HackRF One

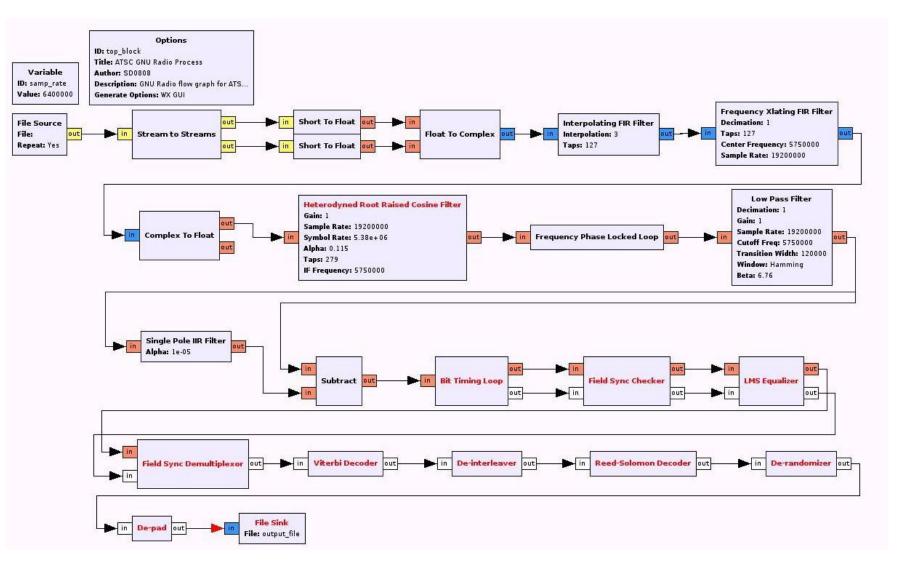
- Frequency Range: 1 MHz to 6 GHz
- Bandwidth: 20 MHz
- Transmit or receive. Half-duplex
- ~ \$330

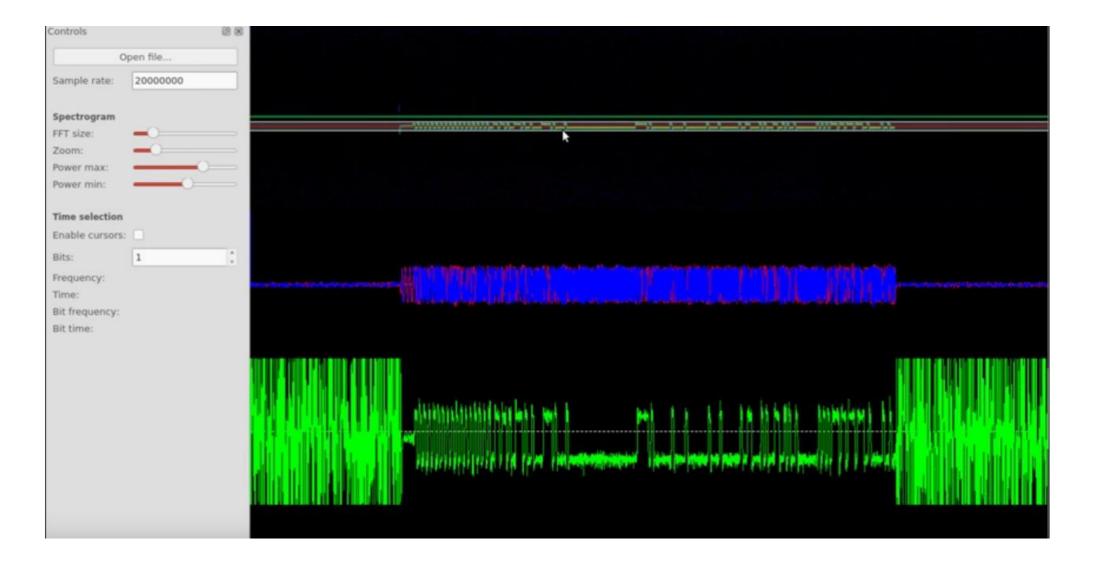
Hardware – BladeRF x40

- Frequency Range: 300 MHz to 3.8 GHz
- Bandwidth: 28 MHz
- Transmit and receive. Full-duplex
- ~ \$440

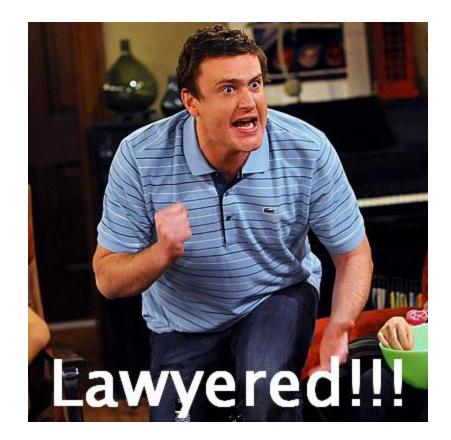


Hardware – USRP


- Several product lines. Bus, Network, X
- Network and X lines have modular RF Daughterboard design
 - UBX board: 10 MHz to 6 GHz, 160 Mhz bandwidth, full-duplex
- ~ \$2000-\$5000

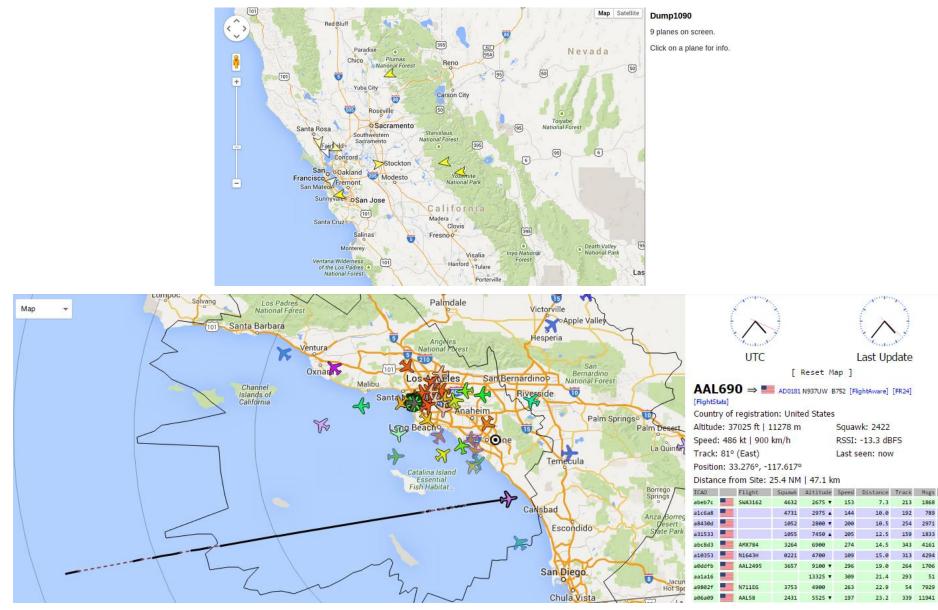

Software – Visualization - GQRX / SDR#

Software – GNU Radio


Software - Inspectrum

Software - Python

- GNU Radio
- Matlibplot
- numpy

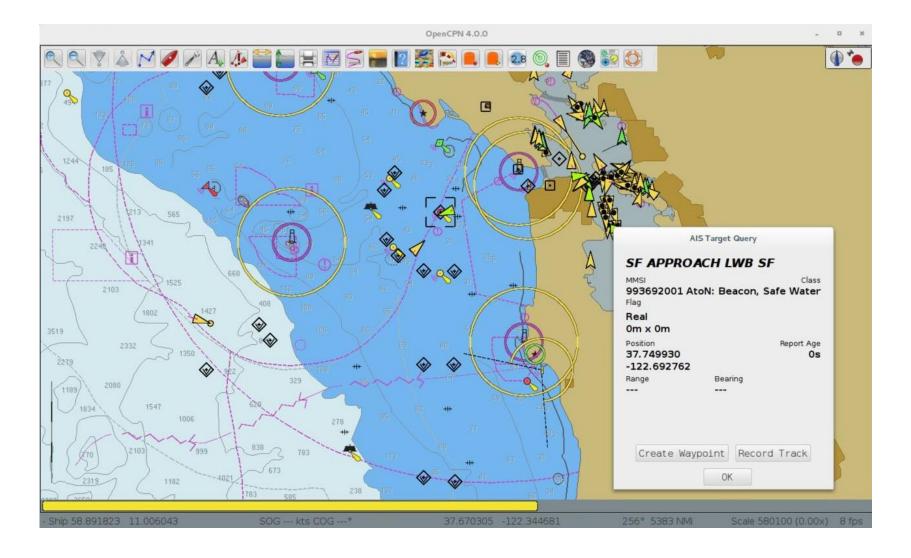

Decoding Example - Planes

- ADS-B: Automatic Dependent Surveillance Broadcast
- Aircraft gets position from satellite and broadcasts it for tracking
- No encryption or authentication
- Frequency: 1090 MHz / 978 MHz

Decoding Example – Planes – dump1090

Hex	Mode	Sqwk	Flight	Alt	Spd	Hdg	Lat	Long	Sig	Msgs	
400e14	S	7315	EZY43PT	37000	419	353			5	42	0
406099	S	7634	CFE59G	38000					5	17	2
484cb6	S	6264	KLM65G	36325	413	297	55.844	-0.518	5	88	Ø
406a2e	S	7615	GMA104T	28000					4	100	2
400f ba	S	5431	BEE1VB	5350					35	733	Ø
4ca281	S	7322	VIR3007	33175	396	336	54.564	-2.611	12	946	Ø
400ad1	S	7607		20025					- 7	208	Ø
400721	S	4246	LOG47LU	8550					30	955	Ø
400c5c	S	1444		27025					5	95	32
40610e	S	7330	BEE3FU	24000					9	583	Ø
400cb9	S	7732	LOG79ES	14500					11	922	Ø
4012d2	S	5466	LOG34YT	7100					6	83	5
405633	S	6254	EZY44NH	19425	387	149	55.408	-4.174	6	3039	13
400617	S	3416	TCX61EF	21550	439	108	55.364	-3.253	16	5062	Ø
405f79	S	4477	BEE767	19125					38	6845	Ø
400984	S	4622	EZE28Z	21475					12	3243	Ø
4ca73d	S	4244	RYR6699	3250	156	279	56.017	-3.135	81	6853	Ø
400987	S	4621	EZE76LK	23475					11	6841	Ø
400691	S	7762	BAW9CG	32675	458	317	56.386	-4.997	11	16051	Ø
4066d1	S	2227	TOM296	33225	488	151	54.700	-3.405	8	8244	Ø
4008fb	S	7655	LOG74HR	17600					10	5627	Ø
491304	S	7646	CSDXD	40000					8	5268	Ø

Decoding Example – Planes – dump1090



Decoding Example - Ships

- AIS: Automatic Identification System
- Similar protocol to ADS-B
- Frequency: 162 MHz

Decoding Example – Ships – gr-ais / opencpn

- gr-ais for receiving data
- Opencpn to map

Decoding Example - Pagers

- POCSAG: Post Office Code Standardization Advisory Group
- Frequencies: 35.22 / 35.58 / 43.22 / 43.58 / 152.0075 (medical) / 152.2700 / 152.4800 / 157.4500 (medical) / 158.1000 / 158.7000 / 163.2500 (medical) / 454.0125 - 454.5000 / 462.7500 – 462.9250 / 465.0000 / 929.0125 – 929.9875 / 931.0125 – 931.9875
- Gqrx | multimon-ng

Hacking (Active) Examples and Thoughts

ANDY GREENBERG SECURITY 06.04.15 7:00 AM

THIS HACKED KIDS' TOY OPENS **GARAGE DOORS IN SECONDS**

9TO5Mac

≤ f ¥ 8+ 🛛 为 search

MAC IOS AAPL GUIDES REVIEWS APPS COMMUNITY CASHBACK/FIX

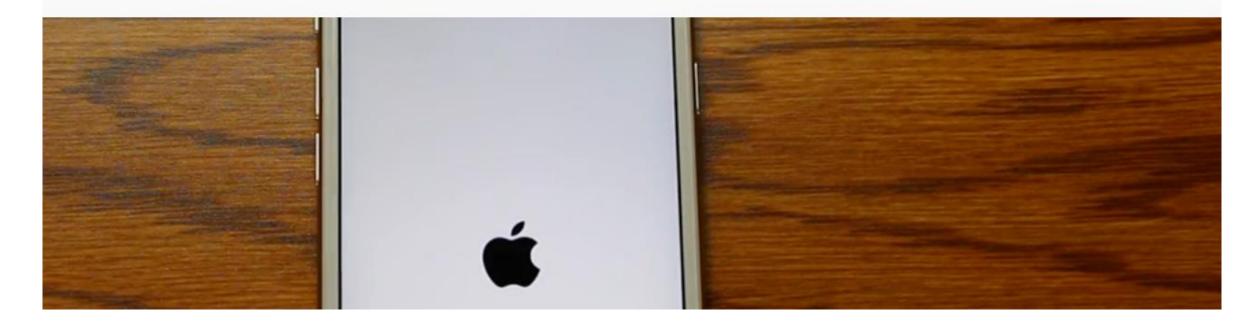
NDING IN IOS DEVICES

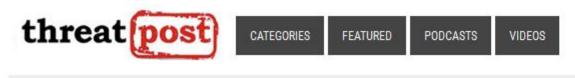
TRENDING IN IOS DEVICES Opinion: How iPhone SE is tempting me to actually skip iPhone 7 TRENDING IN AAPL COMPANY

Q

hands on with an AirPlay competitor for home wireless music

Apple Worldwide Developer Conference 2016: Everything you need to know about this year's WWDC

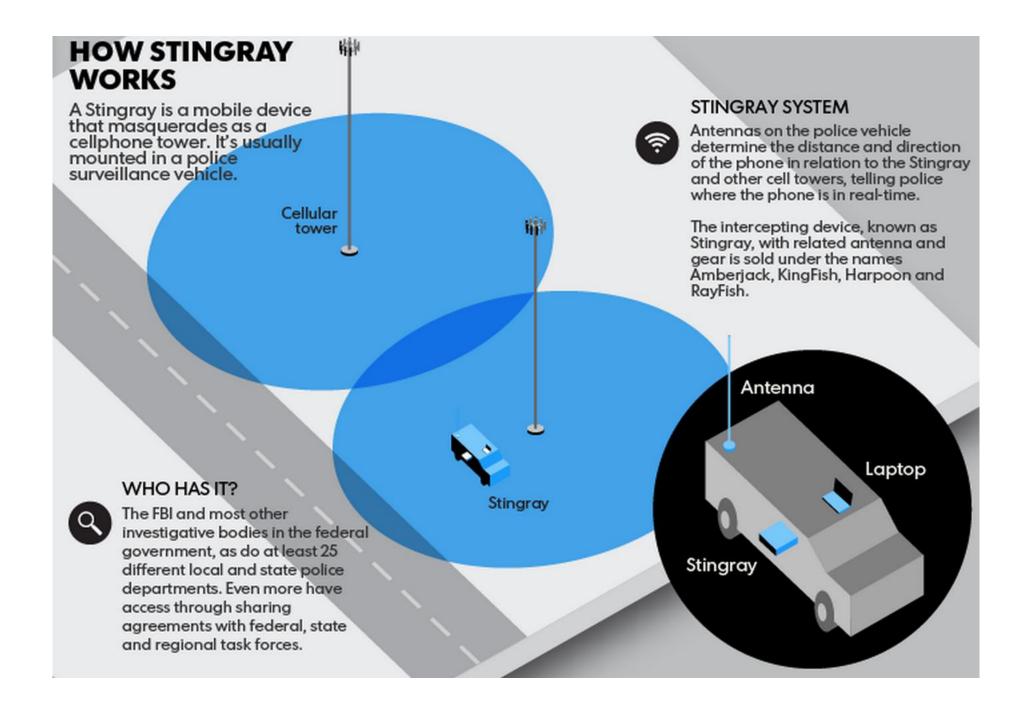

FEBRUARY 15


AAPL: 93.99 0.29 🔨

Apple officially acknowledges iPhone bricking '1970 date' bug, says upcoming software update will fix

Benjamin Mayo - 2 months ago 🔰 @bzamayo

AAPL COMPANY IOS IOS DEVICES



🎔 f G in 📇 🔊

Welcome > Blog Home > Cryptography > Hack Disarms SimpliSafe's Home Wireless Security Systems

RADIO ATTACK LETS HACKERS STEAL 24 DIFFERENT CAR NODELS

Other Interesting Systems

- Smart Meters
- Door Access Systems (ex. HID)
- Toll Tags (ex. FasTrak)
- Touch Payment Systems

Process for Decoding - 3 steps

- Determine Frequency
- Determine Modulation
- Determine Protocol / Structure

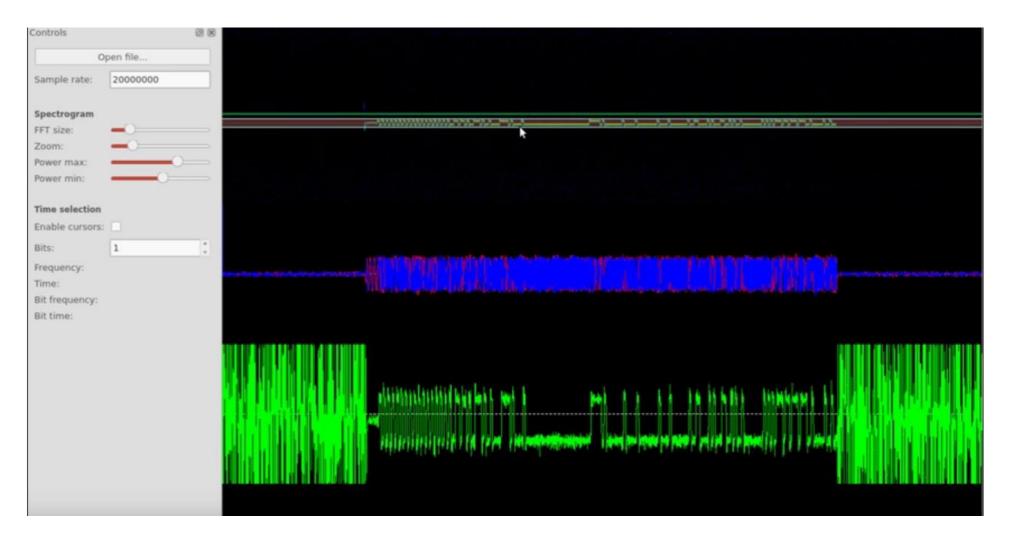
Restaurant Pagers from Long Range Systems

1 - Determine Frequency

• FCC database

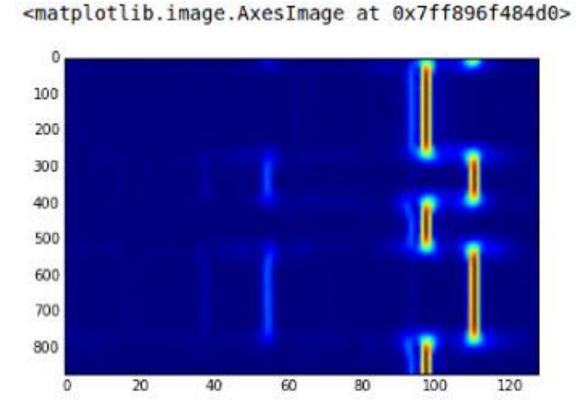
- https://www.fcc.gov/general/fcc-id-search-page
- https://fcc.io/

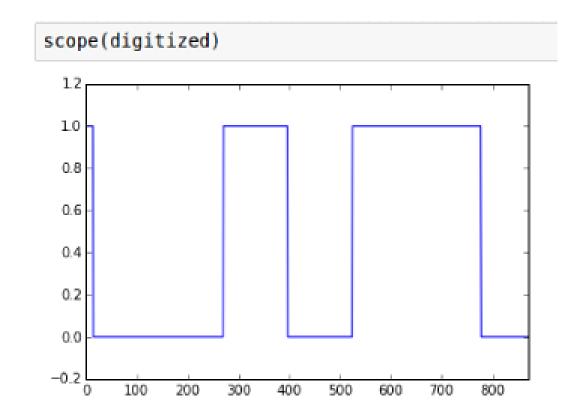
1 results were found that match the search criteria: Grantee Code: M74 Product Code: T7400


Displaying records 1 through 1 of 1.

View Forn					Address	City	State	Country	Zip Code	FCC ID	Application	Final		Upper
	Exhibits	Grant	Corresp-	Name							Purpose	Action	Frequency	Frequency
			ondence									Date	In MHz	In MHz
	<u>Detail</u> Summary	<u>E</u>		Long Range Systems Inc	4550 Excel Parkway #200	Addsion	TX	United States	75001	M74T7400	Original Equipment	:03/24/2000	467.75	467.75

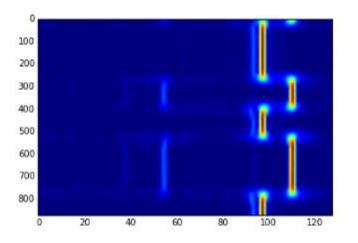
Perform Search Again

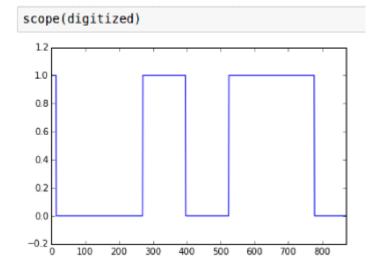

2 - Determine Modulation

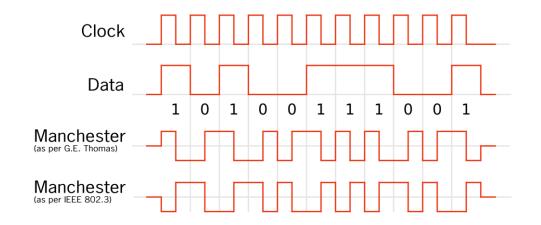

• Gqrx / inspectrum

2 - Determine Modulation

python

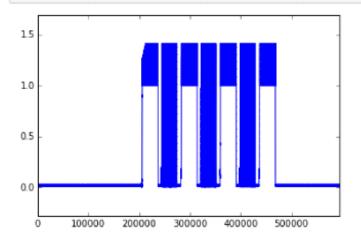





2 - Determine Modulation

python

<matplotlib.image.AxesImage at 0x7ff896f484d0>


3 - Determine Protocol / Structure

- fc2d = preamble / header?
- 09 = function?
 - vibrate
 - lights
 - chime
 - all
- 0001 = pager id?
- 4478 = checksum?
- All those other bytes?

cs = decode_file('gqrx_20160314_pager1_467765000_80000_fc.raw')
[distillrfbase.hexsearch(c,'fc2d') for c in cs]

```
[BitStream('0xfc2d0900010000000004478'),
BitStream('0xfc2d090001000000000447, 0b100'),
BitStream('0xfc2d0900010000000004478'),
BitStream('0xfc2d09000100000000447, 0b100'),
BitStream('0xfc2d090001000000004478'),
BitStream('0xfc2d090001000000004478'),
BitStream('0xfc2d090001000000004478')]
```


Conclusion

- SDR allows for cheaper barrier to entry when looking at RF
- Basic attacks work against some proprietary systems
 - Don't rely on obfuscation
- Attack scenarios from traditional pentesting carries over to wireless
 - DoS
 - Fuzzing
 - Overflows
 - etc
- Dedicated hardware is still very useful for RE as the equipment was designed to work for that specific application
 - SDR might be the cheaper and/or only solution if black box testing

Questions?

Thanks and hack away!

- g@rrettgee.com
- http://garrettgee.com/lethal/
 - Slides
 - Links
 - Resources